Новости        Телеология        en

Наука и жизнь
Со временем в дезоксирибонуклеиновой кислоте накапливаются мутации - погрешности в генетическом тексте, которые мешают клеткам выполнять свои функции. Однако кроме мутаций есть ещё и так называемые эпигенетические изменения, или эпигенетические модификации. Дело в том, что активность генов зависит не только от того, что записано в дезоксирибонуклеиновой кислоте, но и от того, как дезоксирибонуклеиновая кислота упакована, какие регуляторные молекулы с ней связываются и какие химические модификации с ней происходят. Особенность эпигенетических механизмов в том, что они действуют очень долго. Эпигенетический «рубильник» может подавить активность гена на всю жизнь. Более того, эпигенетические изменения могут перейти через половые клетки в другое поколение.

Известно, что эпигенетические изменения происходят в связи с самыми разными событиями. Например, стресс или определённая диета влияют на эпигенетику определённых генов. В свою очередь, изменения в эпигенетике влияют на дальнейшую активность этих генов и вообще на самочувствие клетки. Соответственно, с возрастом на дезоксирибонуклеиновой кислоте появляется «узор старости» – эпигенетические модификации, которые не дают генам работать так, как они работали в молодости. Модификации, о которых идёт речь, это химические группы, присоединённые к дезоксирибонуклеиновой кислоте. Ещё раз подчеркнём, что при такой модификации генетический текст не меняется, никаких мутаций не возникает. Но присутствие или отсутствие тех или иных химических групп влияет на то, насколько генетическая информация в дезоксирибонуклеиновой кислоте доступна для работы. Чаще всего тут можно услышать о рисунке метилирования. Метильные группы СН3 - составляют тот самый «узор старости», подавляющий активность ряда генов.

Но этот узор можно стереть, тем самым омолодив клетку. Исследователи из Гарварда экспериментировали с ганглионарными клетками сетчатки. Они собирают сигналы от светочувствительных палочек и колбочек и передают их в зрительный нерв; собственно, сам зрительный нерв представляет собой пучок аксонов - длинных отростков ганглионарных клеток. В ранней юности они могут исправить повреждения в своих отростках, но потом довольно быстро регенеративные способности ганглионарных клеток слабеют, и если что-то случается с их аксонами, исправить поломку они не могут. Что, соответственно, сказывается на зрительной способности.

Оказалось, что клетки можно омолодить, если ввести им три гена - Oct4, Sox2 и Klf4. Это очень известные гены - именно с их помощью зрелые, дифференцированные клетки превращают в эмбриональные стволовые. Зрелые и дифференцированные клетки не могут делиться - у них свои задачи, стволовые же делятся сколько угодно и могут превратиться в любой тип зрелых клеток. Стволовые клетки, которые получают с помощью молекулярно-генетических манипуляций, называют индуцированными плюрипотентными - то есть «всемогущими». Гены, с помощью которых это делают, сами управляют активностью многих других генов, помогая обратить клетку в стволовое состояние. Обычно такие гены работают только во время эмбрионального развития и потом всю оставшуюся жизнь молчат. Но если в клетку внести дополнительные копии перепрограммирующих клетку генов, они молчать не будут, и клетка омолодится.

Вообще говоря, таких генов четыре, а не три, но исследователи воспользовались только тремя. У подопытных мышей механически повреждали зрительный нерв, после чего в сетчатку отправляли три вышеупомянутых «стволовых» гена. Ганглионарные клетки, которые получали эти гены, не погибали после повреждения и даже отращивали новые отростки-аксоны. Самое главное, что у них менялся эпигенетический рисунок на дезоксирибонуклеиновой кислоте - возрастные следы в виде метильных меток исчезали. То, что дело было именно в эпигенетической регуляции, подтвердилось в экспериментах, в которых у клеток отключали ферменты, снимающие метильные метки с дезоксирибонуклеиновой кислоты - такие клетки не могли омолодиться, несмотря на посылку со «стволовыми» генами. Иными словами, переход из детского стволового состояния в более зрелое, способность к регенерации и так далее зависит от эпигенетических механизмов регуляции генетической активности. Даже если омолаживающие гены будут работать, они ничего не смогут сделать без ферментов, обслуживающих клеточную эпигенетику.

Омоложение ганглионарных клеток помогает восстановить зрение. В другом эксперименте мышам создавали повышенное внутриглазное давление, как при глаукоме. Из-за повышенного давления ганглионарные клетки чувствуют себя плохо, у них отмирают аксоны - и сами они тоже отмирают. Но если мышам с глаукомоподобной болезнью вводили «стволовые» гены, зрение у них восстанавливалось - не полностью, но примерно вполовину от того, что было утрачено. Впрочем, тут надо иметь в виду, что экспериментальная глаукома у мышей была на ранней стадии.

Аналогичный эксперимент поставили со здоровой мышью среднего возраста, то есть которой исполнился уже год от роду. Острота зрения у неё уже упала на 15% по сравнению с более молодыми пятимесячными особями. Но после генетической обработки зрение у взрослой мыши стало, как у молодой. И с дезоксирибонуклеиновой кислоты её ганглионарных клеток исчезали возрастные эпигенетические метки.

Насколько такая перезагрузка эпигенетики возможна у человека, пока сказать трудно. Возможно, в будущем подобным способом можно будет омолаживать не только клетки сетчатки, но вообще любые клетки в любом органе. Впрочем, будет очень неплохо, даже если этот метод пригодится только для лечения ранних стадий глаукомы.

Результаты исследований опубликованы в Nature.

2001-2024 Лицензия CC BY-NC-ND Денис Полевой