Новости        Телеология        en

Компьютерра
Сотрудники Стэнфордского университета США создали функциональную модель синапса на основе материала с лёгким изменением фазового состояния.

Мозг человека по многим параметрам - надёжности работы, гибкости структуры, устойчивости к ошибкам - превосходит современные вычислительные системы. Кроме того, он куда более экономно расходует энергию: на моделирование пяти секунд его деятельности на суперкомпьютере, к примеру, уходит уже 500 с и 1.4 МВт.

Структурными элементами мозга, как известно, служат нейроны, количество которых у человека приближается к ста миллиардам. Соединение нейронов друг с другом обеспечивают синапсы, отвечающие за параллелизм и гибкость нашей вычислительной «схемы». Уникальной характеристикой последних считается пластичность, зависящая от момента времени импульса -spike-timing dependent plasticity, или способность нервных клеток изменять эффективность связи. Выполненные в ХХ веке эксперименты показали, что сила - «вес» - синапса зависит от порядка следования пре- и постсинаптических импульсов, а также от интервала времени между ними. Если приходящий пресинаптический импульс периодически предшествует постсинаптическому в пределах некоторого временнóго окна, то сила синапса возрастает - происходит потенциация, а в обратном случае наблюдается депрессия - уменьшение «веса» синапса.

Число синапсов в мозге человека оценивается в 10*15. Очевидно, что электронная модель синапса должна быть максимально простой, но добиться этого в рамках привычной КМОП-технологии не получается. На создание одного устройства уходит около 20 транзисторов, которые занимают значительную площадь.

Материалы с лёгким изменением фазового состояния, которые привлекли внимание авторов новой работы, чаще всего используются при конструировании элементов памяти. Значения «0» и «1» в этом случае кодируются разными уровнями сопротивления, между которыми можно переключаться, подавая электрические импульсы, нагревающие материал и вызывающие фазовое превращение. Высокое сопротивление соответствует аморфному состоянию, а низкое — кристаллическому.

В своих опытах американцы задействовали давно известное халькогенидное стекло Ge2Sb2Te5 - GST, применяемое для создания рабочего слоя перезаписываемых DVD-дисков. Слой GST разместили между двумя электродами, выполненными из нитрида титана TiN, причём нижний был сделан тонким и вытянутым в длину.

Для моделирования синапса, сила которого регулируется плавно, двух выделенных уровней сопротивления явно недостаточно, и учёным пришлось разрабатывать оригинальную схему подачи импульсов напряжения, чтобы получить возможность постепенно варьировать параметры GST. Экспериментируя, они добились того, что сопротивление в аморфном и кристаллическом состоянии отличалось на порядок, а шаг изменения оказался совсем небольшим. Весь процесс перехода можно было разбить сразу на 100 этапов. Последующие опыты убедительно доказали, что схема на базе GST при подаче искусственных пре- и постсинаптических импульсов на верхний и нижний электроды вполне адекватно воспроизводит действие синапса и позволяет вывести уже установленное биологами правило изменения его «веса».

Энергию, расходуемую на перевод устройства в состояние с высоким сопротивлением, исследователи оценили в ~50 пДж, а энергию, необходимую для перевода GST в кристаллическое состояние в 0,675 пДж. По их словам, энергопотребление можно снижать и дальше, урезая диаметр нижнего электрода; если его уменьшить до 20 нм, расход должен сократиться до 2 и 0,027 пДж. КМОП-моделям такие показатели недоступны.

Стоит заметить, что материалы с лёгким изменением фазового состояния хорошо подходят и для моделирования нейронов. Доказательства этого совсем недавно представила научная группа из британского Эксетерского университета.

2001-2024 Лицензия CC BY-NC-ND Денис Полевой